Test whether variables in a data frame contain only certain values.
expect_values(
vars,
...,
miss = getOption("testdat.miss"),
flt = TRUE,
data = get_testdata()
)
expect_range(vars, min, max, ..., flt = TRUE, data = get_testdata())
<tidy-select
> A set of columns to
test.
Vectors of valid values.
A vector of values to be treated as missing. The testdat.miss or testdat.miss_text option is used by default.
<data-masking
> A filter specifying
a subset of the data frame to test.
A data frame to test. The global test data is used by default.
Minimum value for range check.
Maximum value for range check.
expect_*()
functions are mainly called for their side effects. The
expectation signals its result (e.g. "success", "failure"), which is logged
by the current test reporter. In a non-testing
context the expectation will raise an error with class
expectation_failure
if it fails.
sales <- data.frame(
sale_id = 1:5,
date = c("20200101", "20200101", "20200102", "20200103", "20220101"),
sale_price = c(10, 20, 30, 40, -1)
)
try(expect_values(date, 20000000:20210000, data = sales)) # Dates between 2000 and 2021
#> Error : `sales` has 1 records failing value check on variable `date`.
#> Variable set: `date`
#> Filter: None
#> Arguments: `<int: 20000000L, 20000001L, 20000002L, 20000003L, 20000004L, ...>,`
#> `sales` has 1 records failing value check on variable `date`.
#> Variable set: `date`
#> Filter: None
#> Arguments: `miss = <chr: NA, "">`
try(expect_range(sale_price, min = 0, max = Inf, data = sales)) # Prices non-negative
#> Error : `sales` has 1 records failing range check on variable `sale_price`.
#> Variable set: `sale_price`
#> Filter: None
#> Arguments: `min = 0, max = Inf`